ESTIMATION OF HENRY'S CONSTANTS FROM HIGH PRESSURE GAS SOLUBILITIES. THE SYSTEMS $\mathrm{CO}_{2}+\mathbf{n -}$ HEXANE AND $\mathrm{N}_{2} \mathrm{O}+\mathrm{n}$-HEXANE

I.Găinar*, Daniela Bala
abstract: Experimental determination of gas solubilities of CO_{2} and $\mathrm{N}_{2} \mathrm{O}$ in n-hexane (at pressures up to 50 bar and temperatures $0,5,10,15$ and $25^{\circ} \mathrm{C}$) will be presented. Henry's constants will be estimated by using of Krichevsky-Kazarnovsky and Krichevsky-Ilinskaya equations.

Introduction

The solubility of gases in liquids is an area of active interest from both the theoretical and practical standpoints. Both the dilute solutions resulting from the low solubility of many gases in liquids, and the large variety of sizes, shapes and polarities of gas molecules to act as "probes" have made the solubility of gases in liquids an excellent tool to investigate the test theories of liquid properties and liquid structure. A knowledge of the solubility of gases is of practical importance in various industrial processes, in the study of artificial atmospheres for divers and astronauts, in the interaction of gases with our environment, in processes for saline water demineralization, and in the study of various biological fluids and tissues [1].
This paper deals with experimental determination of gas solubilities of CO_{2} and $\mathrm{N}_{2} \mathrm{O}$ in nhexane (at pressures up to 50 bar and temperatures $0,5,10,15$ and $25^{\circ} \mathrm{C}$) and from these values we have calculate the Henry's constants by using of Krichevsky-Kazarnovsky and Krichevsky-Ilinskaya equations.

Theoretical considerations

From theoretical point of view, problem of gas solubility in liquids represents a particular case of liquid - vapor phase equilibrium.

[^0]\[

$$
\begin{equation*}
\left(C_{1}+C_{2}\right)^{l} \Leftrightarrow C_{2}^{g} \tag{1}
\end{equation*}
$$

\]

The general relation which governs this process derive from general condition of thermodynamic equilibrium, namely:

$$
\begin{equation*}
\mu_{2}^{l}=\mu_{2}^{g}, \text { or } f_{2}^{l}=f_{2}^{g} \tag{2}
\end{equation*}
$$

By introduction of significance of solute fugacity in both phases we obtain:

$$
\begin{equation*}
f_{2}^{0, l} \cdot \gamma_{2}^{l} \cdot x_{2}^{l}=x_{2}^{g} \cdot \gamma_{2}^{g} \cdot P \tag{3}
\end{equation*}
$$

that represents generalised form of Raoult's law. Because Henry's law shows the proportionality between gas fugacity and its concentration in the solution,

$$
\begin{equation*}
f_{2}^{g}=H \cdot x_{2}^{l} \tag{4}
\end{equation*}
$$

results that the product $f_{2}^{0, l} \cdot \gamma_{2}^{l}$ represent just the Henry's constant (which depends on the nature of both components - depends on the nature of solvent by means of activity coefficient γ_{2}^{l}). The Henry's constant depends only on the temperature.

Taking as standard state the ideal dilute solution, even by definition of Henry's constant, it means that for a concentrate solution (at high pressures) the equation (4) should be corrected by introduction of the activity coefficient in asymmetric convention, $\gamma_{2}^{*, l}$:

$$
\begin{aligned}
& \gamma_{1}^{l} \rightarrow 1 \quad \text { when } \quad x_{1}^{l} \rightarrow 1 \quad \text { for solvent and } \\
& \gamma_{2}^{*, l} \rightarrow 1 \quad \text { when } \quad x_{2}^{l} \rightarrow 0 \quad \text { for solute }
\end{aligned}
$$

Introduction of asymmetric convention of normalization eliminates the arbitrary in the definition of $f_{2}^{0, l}$ (standard state fugacity of solute), which can be experimentally determinate:

$$
\begin{equation*}
f_{2}^{0, l}=\lim _{x_{2}^{l} \rightarrow 0}\left(\frac{f_{2}^{g}}{x_{2}^{l}}\right)=H_{2,1}^{P_{1}^{s}} \tag{5}
\end{equation*}
$$

where $H_{2,1}^{P_{1}^{s}}$ represents the Henry's constant for solute 2 in solvent 1 at the system temperature and the P_{1}^{s} (the saturation pressure of pure solvent).

As long as the pressure is not large, the pressure dependence of Henry's constant can be neglected. At high pressure the effect is not negligible and therefore it is necessary to consider how Henry's constant depends on pressure. This dependence is obtain by using the equation:

$$
\begin{equation*}
\left(\frac{\partial \ln f_{2}^{l}}{\partial P}\right)_{T, x_{2}^{l}}=\frac{\bar{V}_{2}^{l}}{R T} \tag{6}
\end{equation*}
$$

where \bar{V}_{2}^{l} is the partial molar volume of solute in the liquid phase. By substitution of relation (5) in equation (6) we finally obtain:

$$
\begin{equation*}
\ln \frac{f_{2}^{g}}{x_{2}^{l}}=\ln H_{2,1}^{P_{1}^{s}}+\frac{\bar{V}_{2}^{\infty, l} \cdot\left(P-P_{1}^{s}\right)}{R T} \tag{7}
\end{equation*}
$$

where we assume that the partial molar volume at infinite dilution, $\bar{V}_{2}^{\infty, l}$, is independent on pressure. The above equation is known as Krichevsky-Kasarnovsky equation. This equation is very useful for representing solubilities of sparingly soluble gases to very high pressures.
In more cases is not reasonable to expect that the activity coefficient of the solute in the liquid phase is independent of composition or that the partial molar volume is constant. Variation of the activity coefficient of the solute with the mole fraction can be given by two-suffix Margules equation:

$$
\begin{equation*}
\ln \gamma_{1}^{l}=\frac{A}{R T} \cdot\left(x_{2}^{l}\right)^{2} \tag{8}
\end{equation*}
$$

where A is an empirical constant determined by intermolecular forces in the solution.
The activity coefficient $\gamma_{2}^{*, l}$ of the solute normalized according to the unsymmetric convention is found from the Gibbs-Duhem equation:

$$
\begin{equation*}
\ln \gamma_{2}^{*, l}=\frac{A}{R T} \cdot\left[\left(x_{1}^{l}\right)^{2}-1\right] \tag{9}
\end{equation*}
$$

The fugacity of component 2 at pressure P_{1}^{s} is:

$$
\begin{equation*}
f_{2}^{l}=\gamma_{2}^{*, l} \cdot H_{2,1}^{P_{1}^{s}} \cdot x_{2}^{l} \tag{10}
\end{equation*}
$$

Instead of equation (7) we obtain:

$$
\begin{equation*}
\ln \frac{f_{2}^{g}}{x_{2}^{l}}=\ln H_{2,1}^{P_{1}^{s}}+\frac{A}{R T} \cdot\left[\left(x_{1}^{l}\right)^{2}-1\right]+\frac{\bar{V}_{2}^{\infty, l} \cdot\left(P-P_{1}^{s}\right)}{R T} \tag{11}
\end{equation*}
$$

Equation (11) is known as Krichevsky-Ilinskaya equation.
For liquid-gas solutions, Krichevsky-Ilinskaya equation represents a significant improvement with regard of Krichevsky-Kasarnovsky equation. Between the three parameters of the equation, the Henry's constant is the most important. Henry's constant has always positive values while A and $\bar{V}_{2}^{\infty, l}$ can be positive or negative [2-9].

Materials and method

Principle of experimental method as well as working procedure and analysis of obtained data were presented in a previous work [10].
N -hexane was a Merck Schuchardt solvent zur Synthese (d at $20^{\circ} \mathrm{C}$ is 0.659), carbon dioxide was a pure Linde gas (99.9%) and $\mathrm{N}_{2} \mathrm{O}$ was for medical use.

Experimental parameters were measured with high precision (working pressure ± 0.01 bar, working temperature $\pm 0.02^{\circ} \mathrm{C}$, pressure of desorbed gas $\pm 0.05 \mathrm{~mm} \mathrm{Hg}$, and mass of solvent- with analytical balance).

Results and Discussions

Tables 1 and 2 contain the Henry's constants calculated from both methods (KrichevskyKazarnovsky and Krichevsky-Ilinskaya equations). These data were obtained by using of experimental solubilities values of CO_{2} and $\mathrm{N}_{2} \mathrm{O}$ in n-hexane at various temperatures and pressures [11]. The gas fugacities at different temperatures and pressures were calculated by using of computing programme based on Redlich-Kwong equation:

$$
\ln f=\ln \frac{R T}{V-b}+\frac{a}{b R T^{3 / 2}} \ln \frac{V}{V+b}+\frac{b}{V-b}-\frac{a}{R T^{3 / 2}(V+b)}
$$

where $a=0.42748 \cdot R^{2} \cdot \frac{T_{c}^{2}}{P_{c}}$ and $b=0.08664 \cdot R \cdot \frac{T_{c}}{P_{c}}$.
For $\mathrm{CO}_{2}: \mathrm{T}_{\mathrm{c}}=304.1 \mathrm{~K}$ and $\mathrm{P}_{\mathrm{c}}=73.8 \mathrm{~atm}$.
For $\mathrm{N}_{2} \mathrm{O}: \mathrm{T}_{\mathrm{c}}=309.6 \mathrm{~K}$ and $\mathrm{P}_{\mathrm{c}}=72.4 \mathrm{~atm}$.
Because experimental measurements were performed at high pressures, the vapor pressure of pure solvent, P_{1}^{s}, can be neglected.

T [K]	P [bar]	x_{2}^{l}	f_{2}^{g}	$\ln \frac{f_{2}^{g}}{x_{2}^{l}}$	$\ln \frac{f_{2}^{g}}{x_{2}^{l}}-\frac{\bar{V}_{2}^{\infty}}{R T} \cdot\left(P-P_{1}^{s}\right)$		$H_{2,1}$	
							$\begin{gathered} \text { K-K } \\ \text { (eq. 7) } \end{gathered}$	$\begin{gathered} \text { K-I } \\ \text { (eq. } 11 \text {) } \end{gathered}$
273.15	37.43	0.450	28.78	4.16		4.07		
	36.26	0.380	28.15	4.31		4.22		
	32.04	0.365	25.72	4.26		4.18		
	30.38	0.331	24.69	4.31		4.24	108.10	105.15
	24.85	0.219	18.90	4.46		4.40	108.10	105.15
	20.58	0.204	17.96	4.48		4.27		
	12.74	0.122	11.73	4.56		4.53		
	5.68	0.058	5.48	4.55		4.54		

278.15	44.00	0.508	32.63	4.16	4.06	127.89	126.43
	39.00	0.421	30.11	4.27	4.17		
	29.10	0.281	24.15	4.45	4.38		
	21.46	0.194	18.76	4.57	4.52		
	8.13	0.071	7.74	4.69	4.67		
283.15	41.45	0.379	31.92	4.43	4.33	144.98	144.34
	41.25	0.368	31.82	4.46	4.36		
	30.96	0.260	25.64	4.59	4.52		
	21.75	0.176	19.12	4.69	4.64		
	12.54	0.094	11.66	4.82	4.79		
288.15	44.78	0.351	34.23	4.58	4.47	149.04	150.14
	41.25	0.340	32.30	4.55	4.46		
	33.51	0.254	27.59	4.69	4.61		
	30.87	0.222	25.85	4.76	4.69		
	21.75	0.152	19.24	4.84	4.79		
	9.99	0.073	9.46	4.86	4.84		
298.15	52.33	0.350	39.33	4.72	4.60	158.35	160.77
	41.65	0.265	33.40	4.84	4.74		
	41.35	0.261	33.22	4.85	4.75		
	31.85	0.203	27.01	4.89	4.82		
	31.65	0.201	26.87	4.90	4.83		
	26.75	0.169	23.32	4.93	4.87		
	15.68	0.100	14.49	4.98	4.94		
	11.85	0.081	11.17	4.93	4.90		
	7.05	0.046	6.81	4.99	4.98		

T [K]	P [bar]	x_{2}^{l}	$f_{2}{ }^{g}$	$\ln \frac{f_{2}^{g}}{x_{2}^{l}}$	$\ln \frac{f_{2}^{g}}{x_{2}^{l}}-\frac{\bar{V}_{2}^{\infty}}{R T} \cdot\left(P-P_{1}^{s}\right)$	$H_{2,1}$	
						$\begin{gathered} \mathrm{K}-\mathrm{K} \\ (\mathrm{eq.} 7) \end{gathered}$	$\begin{gathered} \text { K-I } \\ \text { (eq. 11) } \\ \hline \end{gathered}$
273.15	29.60	0.486	24.20	3.91	3.84	74.40	76.05
	24.79	0.351	21.00	4.09	4.03		
	19.70	0.275	17.30	4.14	4.09		
	15.20	0.212	13.77	4.17	4.13		
	9.70	0.154	9.12	4.14	4.12		
	6.08	0.084	5.85	4.24	4.23		
278.15	30.90	0.393	25.32	4.17	4.09	84.54	81.28
	24.60	0.309	21.06	4.22	4.16		
	19.11	0.235	16.97	4.28	4.23		
	14.80	0.184	13.51	4.29	4.26		
	10.09	0.131	9.49	4.28	4.26		
	5.78	0.092	5.58	4.11	4.09		
283.15	30.38	0.351	25.26	4.28	4.20	90.76	92.68
	24.89	0.292	21.45	4.30	4.24		
	20.09	0.229	17.84	4.36	4.31		
	14.99	0.167	13.73	4.41	4.37		
	10.19	0.116	9.61	4.42	4.39		
	5.68	0.085	5.50	4.17	4.16		
288.15	31.75	0.311	26.44	4.44	4.37	96.54	98.00
	26.56	0.259	22.83	4.48	4.42		
	21.85	0.221	19.32	4.47	4.42		
	16.46	0.176	15.02	4.45	4.41		
	10.39	0.117	9.80	4.43	4.40		

	34.50	0.287	28.82	4.61	4.53		
	29.98	0.258	25.68	4.60	4.54	4.57	108.34
298.15	25.48	0.219	22.37	4.63	4.63		
	19.89	0.168	17.98	4.67	4.59		
	14.50	0.133	13.48	4.62	4.66		

$\overline{\text { For system } \mathrm{CO}_{2}+\mathrm{n} \text {-hexane at } 25^{\circ} \mathrm{C} \text {, in the case when we have obtained the Henry's }}$ constants by using of Krichevsky-Kazarnovsky equation, we represented $\ln \frac{f_{2}^{g}}{x_{2}^{l}}$ versus pressure (figure 1), and when we used Krichevsky-Ilinskaya equation, we represented $\ln \frac{f_{2}^{g}}{x_{2}^{l}}-\frac{\bar{V}_{2}^{\infty}}{R T} \cdot\left(P-P_{1}^{s}\right)$ versus $\left\lfloor 1-\left(x_{1}^{l}\right)^{2}\right\rfloor$ (figure 2). In both cases we obtained a straight line that allow a good extrapolation of Henry's constants.

Fig. 1. Solubility of CO_{2} in n-hexane at high pressures at $25^{\circ} \mathrm{C}$ (Krichevsky-Kazarnovsky equation)

Fig. 2. Solubility of CO_{2} in n-hexane versus molar fractions at $25^{\circ} \mathrm{C}$ (Krichevsky-Ilinskaya equation)

In figures 3 and 4 we represented the Henry's constants, $H_{2,1}^{P_{1}^{s}}$ (obtained from KrichevskyKazarnovsky and Krichevsky-Ilinskaya equations) versus temperature for both systems.

Fig. 3. Temperature dependence of Henry's constants for CO_{2} and $\mathrm{N}_{2} \mathrm{O}$ in n-hexane calculated with Krichevsky-Kazarnovsky equation

Fig. 4. Temperature dependence of Henry's constants for CO_{2} and $\mathrm{N}_{2} \mathrm{O}$ in n-hexane calculated with Krichevsky-Ilinskaya equation

We remark an excellent agreement between the values of Henry's constants calculated with the equation (7) and (11).

REFERENCES

1. Clever, H. L., Battino, R. (1975) Tecn. Chem., 8, Chapter VII The solubility of gases in liquids, $378-436$
2. Prausnitz, J. M., Lichtenthaler, R. N., de Azevedo, E. G. (1999) Molecular Thermodynamics of Fluid - Phase Equilibria, Third Edition, Chapter 10, 583-634
3. Boublik, T. and Lu, B. C. Y. (1978) J. Phys. Chem., 82, 2801
4. Dodge, B. F. and Newton, R. H. (1937) Ind. Eng. Chem. 29, 718
5. Hammett, L. P., (1970) Physical Organic Chemistry, $2^{\text {nd }}$ Ed. New York, McGraw-Hill
6. Hirschfelder, J. O., Curtiss, C. F. and Bird, R. B. (1954) Molecular Theory of Gases and Liquids, New York, John Wiley \& Sons
7. Krichevsky, I. R. and Kasarnovsky, J. S. (1935) J. Am. Chem. Soc., 57, 2168
8. Krichevsky, I. R. and Ilinskaya, A. A. (1945) Zh. Fiz. Khim. USSR, 19, 621
9. Liu, D. D. and Prausnitz, J. M. (1979) J. Appl. Poly. Sci., 24, 725
10. Găinar, I., Anițescu, Gh. (1995) Fluid Phase Equil. 109, 281-289
11. Găinar, I., (2003) Analele Universităţii Bucureş̧ti XII, I-II, 197-202

[^0]: * *Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Bd. Regina Elisabeta, 70346 Bucharest, Romania

